A Ontea — Pattern based Semantic Annotation
Platform

A.1 Basic Information

Ontea tool analyze document or text using a regedgression patterns and detects
equivalent semantics elements according to defoh@uain ontology. Several cross
application patterns are defined but to achievedg@sults new patterns need to be
defined for each application. Ontea also creates omtology individual of defined
class and assignees detected ontology elementsdndis as properties of defined
ontology class.

The method used in Ontea is comparable particulaitly methods sucha s C-
PANKOW, KIM, or SemTag. It works over text applitalio an application domain
that is described by a domain ontological model aseb regular expressions to identify
relations between text and a semantic model. Initiadd to having pattern
implementation over regular expressions, createte@ architecture allows simply
implementation of other methods based on pattemsh ss wrapers, solutions using
document structure, language patterns, e.g. C-PANKLd many others.

A.1.1 Basic Terms

Semantic Identification of formalized objects in texts

Annotation of Text

Ontology Formalized model of problem environmentenstandable
by computer system

Regular regular expression is a string that is used to rdesor

expression match a set of strings, according to certain synites

patterns

A.1.2 Method Description

Ontea works on text, in particular domain descrilbyddomain ontology and uses
regular expression patterns for semi-automatic asimannotation. In Ontea we try to
detect ontology elements within the existing amilan/domain ontology model. It
means that with the Ontea annotation engine we wanachieve the following
objectives:

= Detect meta data from the text
» Prepare improved structured data for later compart@ressing
= Structured data are based on the existing apmitatntology model

The tool results can be made more precise by ctinge©ntea with other tools for

lemmatization (e.g. The Morphondriool for lemmatization of Slovak) and also by
estimating relevance of new created individualsiifgrmation retrieval tools such a
S RFTS or Lucene.

A.1.3 Scenarios of Use

Ontea can be executed in 3 different scenarios:

= Ontea searching relevant concepts in knowledge base) (&&ording to
generic patterns

= Ontea creation creating new individuals of concrete applicatispecific
objects found in text

= Ontea IR Similar as previous with the feedback of inforroatretrieval tool
(e.g. Lucene) to get relevance computed above woedrrence.

Organization Location Person
A 3
i0 isa isa figa isa o
organization SAS Enterprise Country Continent Settlement person_laclavik

A
10 o 10

country_Slovakia location_Europe settlement Bratislava

Figure 1 Simple ontology used in examples

The following texts, one in Slovak and one in Esgin Table 1 and ontology
with several instances (Figure 1) illustrate theégammethod. Moreover the table shows
examples of used pattersn based on regular expnssgtor English only one regular
expression was used to find one or two words béggwith a capital letter.

Table 1 Example Text

Priklad Text Vzory — regularne vyrazy

1 Michal Laclavik works for Slovak Wb(Wp{Lu}[a-z]+ +\p{Lu}{a-
Academy of Sciences located in Z]+\p{Lula-z]+)Wo
Bratislava, the capital of Slovakia

2 Automobilka KIA sa rozhodla investota \o(M\p{LU}][-&\p{L}+[I*[-
pri Ziline, kde vybudovala svoju prvu & \P{LITIT-&We{LI)L,

Al ! J+s\rloll.
tovarei v Eurdpe. Organization

Kontakt: \b[0-9K3}[]*[0-9{2}
+(\p{Lu}{™\s, J+[H{0-9\s, .J¥]

Kia Motors Slovakia, s.r.o.
' J*[*0-9\s,.]*)[T*[0-9\\n,]+
P.O.Box 2] Settlement
01301 Tepkka nad Vahom
Slovakia (vIpri) +(Wp{LuN\p{L}+)
Location
3 Car maker KIA Motors decided to buildininear) +(\p{Luf\p{L}+)

new plant in Slovakia near town of-°caton

! http://nazou.fiit.stuba.sk/home/?page=morphonary

Zilina. It is its first plant in Europe. (cityftown) of (\p{LuP\p{L}+
“Wp{LUBW\p{L})

Settlement
Contact:
Kia Motors Slovakia, Itd. Wo(Mp{LU[-&\p{LH+[M-
P.O.Box 2 ENp{LIT T-&W\efLHIL I+
01301 Teplicka nad Vahom (InclLtd)[.\s]+
. Organization
Slovakia

In the English text example showed only finding in§tances present in a
knowledge base, see Figure 1 and Table 2,rdw. The Slovak text example
demonstrated not only searching for instances withknowledge base but also their
creation. The example uses three patterns for 8lova

= Searching for a company by ,s.r.0.“ (public limitedmpany)
= Searching for residence/domicile by ZIP code

= Searching for geographical location by means op@s#ionsin, near followed
by a word beginning with a capital letter.

Table 2, 2% and 3 rows give the results. Instances created fron2theow are shown
also on Figure 2.

Table 2 Annotation result

Example Method Annotation Results

1 Ontea Michal LaclavikPerson
Slovak AcademyDrganization
BratislavaSettlement
SlovakiaCountry

2 Ontea create Zilinkocation
Europelocation
Kia Motors SlovakiaDrganization
Teplicka nad VahonSettlement

2 Ontea create, Zilina Location

lematizacia EuropaContinent

Kia Motors SlovakiaDrganization
Teplicka nad Valsettlement

3 Ontea create Slovak@&ountry
Zilina Settlement
EuropeContinent
Kia Motors SlovakiaDrganization

To produce results in row 3 in Table 2 we usedatization of found texts that
enables more precise creation of instances in tmimative in cases ,Zilina* and
~Europa“, however, location ,Temka nad Vahom*“ came up wrong, as ,Téké nad
Vah". It would be appropriate to use lemmatizatiorty for several patterns, not for all
of them. Furthermore, we can direct our attention,Eurépa“ that is not of a type
Locationbut Continentbecause algorithm found it in a knowledge basegusiference
sinceContinentis a subclass dfocation In a creation process, algorithm first looks
into the knowledge base to find out whether insgtaoicsuch type or inferred instance
already exists.

Organization Location
A

lio isa lio 0

location__iline 1196435543706 location_Fur_pe_1196435543729

organization_Kia_Motors_Slovakia_1196435 ‘

Settlement ‘

o

seftlement_Tepli_ka_nad_V_hom_1196435543

Figure 2 created instances in Slovak text — Onteate.

Use of Ontea, *Lscenario is also described on example from Joer@fpplication.

iGhasSalary flasRequirementifasBenefivhosEmploymentStatus hasRequirernents*

sonry| [[pmem] g S
hasCurrenc sPeriod* 53 355 1dll
o[| sy [rea] [aveanod]

Figure 3 Job Offer Ontology
On Figure 3 main components of Job Offer ontolagydisplayed. Important fragments

on ontology are Location or Skills individuals whiccan be then detected by
annotation.

Web Developer (Front end)

Company: Trulia.com (mar=ini) Location: San Fancisco
Type: Fulktima (Ban Francisco Bay Ansa)
Experience: Mid-Senior keval Date Posted: February 13, 2008

Function: Enginsering

Industry: Intemet

" Posted by

Wb Devalopar With Linkedin Jobe, you can

posted the job, and which of
Az aWeb Developer inour small and fast-paced front-and team, you will create and maintain intmduce you to that person.
cutting-edge, highperfomance customer-facing and B2ZB Web sites that integrate Ajw, XML,

Join today t ha's hiri
Jdavaseript and other fechnologies ona LAMP architecturs. Soin tocay o ses whos it

E==ential mquiremants:

® 5+ years' exparience with PHP, HTML, Javascript, MySQL and Linw/ UNIX
* 3+ years' expenience with XML, RPC, SOAP, XELT and related technolkogies
* Superh Javascrpt skills

Figure 4 Web Document of Job Offer

On Figure 5 the individual of the Job Offer is ¢eghbased on the semantic annotation
of a Job Offer document (Figure 3), using simplgutar expression patterns (see
regular expression patterns chapter) where mainithahls can be detected by the title
property such as skillXML or skillPHP individual®ther specialized patterns such as
pattFullTime are used to detect concrete job gbfeperties — jtPermanent individual,

which represents a permanent job position. Inekemple the job offer location — San
Francisco id identified by a regular expression A-za-z0-9]+ []+[-A-Za-z0-9] +),
because individual locSF has the property title n,.S&rancisco“. Similarly, other
ontology elements are detected. Some regular esipres search for ontology
individuals, other ontology classes and others sischattFullTime annotate a job offer
by a concrete individual jtPermanent if expressiem || -]Tinme) is found. Systems
detect ontology elements based on domain ontolwgthis example it is ontology of
job offers.

JobOffer

A

3 ,,,,,,/r‘ Skill },, — job_1_html
asCoumry*\\Q hasLocanorﬁ\u ‘Mequlremem‘s\\u hasRequlremems\\gu) g
\ \ N\
Country L’ ‘ locSF ‘ skillPHP ‘ - skill XML hasLocation

Figure 5 Offer Individual Created by Ontea

Detected ontology individuals are then assignegragerties of job offer, thus ontology
instance of job offer is created out of its texpresentation in the NAZOU npilot
application.

A.1.4 External Links and Publications

= Ontology based Text Annotation — OnTeA; Michal leadk, Martin Seleng, Emil
Gatial, Zoltan Balogh, Ladislav Hluchy; Informatidviodelling and Knowledge
Bases XVIII. 10S Press, Amsterdam, Marie Duzi at Rtontiers in Al, Vol. 154,
February 2007, pp.311-315. ISBN 978-1-58603-7 LLESN 0922-6389.

= Ontea: Pattern based Semantic Annotation PlatfddmrceForge.net project,
http://ontea.sourceforge.net/

= Hatcher E., GospodnétiO., Lucene in Action, Manning (12 Jan 2005), ISBN:
1932394281

= Log4J, Java-based logging utility, Apache Softwaré-oundation.
(http://logging.apache.org/log4))

= Jena, http://jena.sf.net/

= Sesame, http://openrdf.org/

A.2 Integration Manual

Ontea is developed in Java (Standard Edition 5)dstdbuted as gar archive. Access
to the functionality of the tool is provided thrdudava Interface. Ontea is not a stand-
alone application; the tool is proposed to be idetliin other application/tool, which
will call the Ontea methods, however several classe implemented witimain()
method to run some test and example functionality.

A.2.1 Dependencies

Ontea uses following libraries:

» Log4J logging utility

= Jena or Sesame semantic web library dependingezhuggsion
= Lucene information retrieval library in case of uséR scenario
= Morphonary tool in case of connection with lemmaittix

A.2.2 Installation

Deploying Ontea into other application requires fokowing steps (Java Integrated
Development Environment and Apache Ant should leellus

1. download all Ontea files from ontea.sf.net
2. ant start to startthe demo acsnt dist to create jar file and use library

You can run and see ontea.example.text.Annotatiass dor more details. Directory
“example” in the ontea root directory contains ¢guirfation files, text to be annotated
and simple ontology presented in the scenario.

A.2.3 Configuration

Ontea use property file which need to be definedemreating onto.sesanvenory
instance. See Java Doc for more details.

Values such as Sesame repository type, locatioontwlogy namespaces need to be
defined. Seento. sesanme. confi g Java Doc for more details.

ontea. config package contain ofattern.property files for different languages or
applications where regular expression patterndbeamodified.
A.2.4 User Guide

Basic Use

If you want to use Ontea without deep knowledgetofitructure and functionalities,
you should build your code based on examplesiaa. exanpl e. t ext package. Class
Annot ati on Shows example how to annotate text from “examglegctory by applying
regular expression patterns from user defined ptpfige (also in example directory).

Annotation examples are also provided within JWest classes e.gntea. core. test.
Test PatternRegexp class, showing annotation of String using definezular
expression.
Code Structure
Main Ontea classes and interfaces are locateft #a. core package. Main objects are:
= Pattern
= Result

Ontea annotation is build on pattern based apprdacisrattern interface is one of
main Ontea objects. Currently only one implemeatatof pattern is provided:

Pat t er nRegExp, Which annotates using regular expression patteEach Pattern
implementation has to implement annotates methdd¢chwannotates given text and
returns Set okesul t s. Result represents result of annotation, whidh f&act individual

of certain type or class. So far there are tweult super classeSesul t Regexp and
Resul t onto. While Rresult is general individual not depending of used patter
ontology/model implementatiorgesul t extensions are created or found by applying
result transformers oResul t instances OResul t Sets.

These transformers are located #ntea.transform package. Package contain
Resul t Transf or mer interface with methods for transformimgsul t andresult set and
also its implementations. Some of implementatimesasmnotation result lemmatization,
ontology knowledge base mapping or relevance ifleation using information
retrieval methods.

Other packages and classes are related to trare®rmplementation, e.g manipulating
sesame repository or integrating lucene indeximgtionality to identify relevance.

Use of transformers can be seenritea. exanpl e. t ext . Annot ati on class, which shows
use of sesame transformer as well as lemmatizatiddlovak text.

A.3 Developer Manual

A.3.1 Tool Structure

Architecture of the system contains similar eleraeag the main annotation algorithm
described in next chapter. Inputs are text ressu(eE ML, email, plain text) which
need to be annotated as well as correspondingpati®m property files. An output is
a new ontology individual, which corresponds to #mmotated text. Properties of this
individual are filled with detected ontology indilials according to defined patterns.

HTML document/
text

41
OnTeA Core
Set of Detected || Rec Exp
individuals N patterns
JL
D . Ontology
Or?t?lzm j Creating Individual Q: class of result
o Individual
g
Individual with | I
properties V@

il

Ontology
Individual

Figure 6 Ontea architecture

When extending the code of Ontea some of follovdlagses and interfaces need to be
extended and implemented:

ontea.core.Pattern: interface to adopt differettepa annotation techniques

onetea.core.Result: class representing resultattérmp annotation — instances of
defined type.

ontea.transform.ResultTransformer: interface tramsing results of annotation
to different type or quality of results e.g. corterentology mapping, knowledge
base implementation or result quality checking.

Ontea works with RDF/OWL Ontologies. It is implenesh in Java using Jena
Semantic Web Library or Sesame library. In bothlengentation inference is used to

achieve better results.

ontea.core.PatternSet

+ PatternSet(;

+ getPatternSet(;

|_onteas.core.Pattern |

«interface» 4 patterr

ontea.core.Result

+ Result(]
+ getIndividual()
+ setIndividual(;

+ annotate(]

ontea.core.PatternRegExp

+ PatternRegExp(]
+ PatternRegExp(]
+ PatternRegExp(;
+ annotate()
+ getName()

+ getPatterr (] + getURI(]
+ getType(; + getLocalName()
+ getThreshold(] + toString(;

+ getPattern()

+ getType(;

+ getRelevance(;
+ setRelevance ()
+ equals(;

+ hashCode(]

ontea.transform.Sesamelndividual...

+ transform()
+ transform()
+ SesamelndividualSearchAndCreate (|

ontea.core.ResultRegExp

+ ResultRegExp()
+ getFoundText(;

«interface»

ontea. transform.ResultTransformer

ontea.core.ResultOnta

+ ResultOnta()
+ ResultOnta()

+ transform(;
+ transform(;

ontea.transform.LuceneRelevance

+ transform (]
+ transform(;
+ LuceneRelevance()

Figure 7 Basic classes of Ontea platform.

Ontea tool can be easily integrated with exteroalst Some tools can be integrated by
implementation of result transformers and othedrteebe integrated directly.

» MapReducelLarge scale semantic annotation using MapReducéit&cture —
Is main topic of this article. Integration with Haap requires implementation of
Map and Reduce methods as described in next chapter

» Language ldentificationin order to use correct regexes or other pattesften
we need to identify language of use. For this reass convenient to integrate
Ontea with language detection tool. We have te€ietta with Nalit. Nalit is
able to identify Slovak and English texts as welb¢hers if trained.

As already mentioned some integration can be dopeinfiplementing Result
transformers:

» Lemmatization: When concrete text is extracted as representatibran
individual, often we need to lemmatize found textfound or create correct
instance. For example capital of Slovakia can bentifled in different
morphological formsBratislavg Bratislave Bratislavy or Bratislovouand by
lemmatization we can identify it always as indivadiBratislava We have tested
Ontea with Slovak lemmatizer Morphonary. It is alpwssible to use

A.3.2

lemmatizers or stemmers from Snowball prdjesthere java code can be
generated.

Relevance ldentificationWhen new instance is being created or foundsit i
important to decide on instance relevance. Thisbeasolved using information
retrieval methods and tools such as Lueiehen connecting with Lucene,
Ontea asks for percentage of occurrence of matodgugar expression pattern
to detected element represented by word on usedintert set. Document set
need to be indexed by Lucene. Example caGbegle, Inc.matched by pattern
for company search\s+([-A-Za-z0-9][J*[A-Za-z0-9]*),[]*Inc[.\\s]+ ", where
relevance is computed as “Google, Inc.” occurredogded by “Google”
occurrence. Use of Lucene is relatediotea IRscenario andluceneRelevance
implementation of ResultTransformerinterface. Similarly, other relevance
algorithms such as cosine measure can be implethemtas was used for
example in SemTag.

OWL Instance TransformatiorBesame, Jena: Transformation of found key —
value pairs into RDFS or OWL instances in Sesamdemra API. With this
integration, Ontea is able to find existing inses knowledge base if existing
and create new once if no instance found in DB.e@rdlso use inference to
found appropriate instance. For example if Ontescgss sentence “Slovakia is
in Europe.” using pattern for location detecti@n|near) +(\p{Lu}\p{L}+)
following type value pair is detectddbcation: Europe If we have Location
ontology with Subclasses as Continents, Settlemésintries or Cities and
Europe is already present as instance of conti@ntea can detect existing
Europe instance in knowledge base using inference.

Method Implementation

The underlying principle of the Ontea algorithm dae described by the following

steps:

1.
2.

The text of a docunent is |oaded.

The text is proceed by defined regul ar expressions and if they are found,
correspondi ng ontol ogy individual according to rest of pattern properties
is added to a set of found ontol ogy individuals.

If no individual was found for matched pattern and createl nstance
property is set, a sinple individual of the class type contained in the
hasCl ass property is created with only property rdf:|abel containing
mat ched t ext.

Such process is repeated for all regular expressions and the result is a
set of found individuals.

An enpty individual of the class representing proceed text is created and
al | possible properties of such ontol ogy class are detected fromthe
class definition.

The detected individual is conmpared with the property type and if the
property type is the sane as the individual type (class), such individual
is assigned as this property.

Such conparison is done for all properties of a new individual
corresponding with the text/document as well as for all detected
i ndi vi dual s.

2 http://snowball.tartarus.org/

? http://lucene.apache.org/

The algorithm also uses inference in order enakéggament of a found individual to
the corresponding property also if the inferredetgb a found individual is the same as
the property type. The weak point of the algoritterthat if the ontology definition
corresponding with the detected text contains sg¢yeoperties of the same type, in this
case detected individuals cannot be properly asdighhis problem can be overcome if
algorithm is used only on creation of individualsdifferent property types. Crucial
steps of the algorithms as well as inputs and dsitpan be seen also on figure 6.

Regular Expression Patterns

Regular expression patterns are the key elemefttteofOntea algorithm. Usually for
each problem domain we need to define new, proldpecific patterns to match the
ontology elements in the text. However severalsagplication patterns exist:

« Matching one word starting with capital lettera- z [- A- za- z0- 9] +)
« Two words pattern;[A- z] [A- za- z0- 9] +[\ s] +[A- Z] [A- Za- z0- 9] +)
» Similar for 3 and 4 words pattern.

When individuals in the reference domain ontologgtain plain text labels describing
or naming the individuals, they can be detecte®Dhbyea using the patterns mentioned
above. Even when using such simple patterns, wadaieve satisfactory results.. If the
reference ontology contains critical amount of wdlials with assigned text labels,
results of annotation are satisfactory with aboemtioned cross application patterns. A
good example is the location ontology, which isduseboth examples provided in this
paper. The location ontology contains concepts sischegions, countries, settlements,
mountains, rivers or lakes as well as individudlsuxh classes. It is possible to create
such ontology with concrete individuals of townsttlements, mountains or rivers.
Such data are available on the intetnéfe have also created such ontology containing
all geographical data for Slovakia.

When keywords such as “Danube” or “Bratislava” appa the text, correct individuals

are detected by Ontea, where the Danube is anidudilvof a river and Bratislava is an

individual of the Capital subclass of the settletreamd the town. Similar detection can
be achieved also with concepts such as a skilbnapany or a category when ontology
consists of a critical mass of individuals.

As already described, Ontea not only detects lmat e@leates individuals if patterns
are set up that way. A good example is again tbation ontology. In many web pages
for instance job offers, location is referencedidmt “Location: City or Region Name”.
When we convert web pages to a plain text, a reg@dpression pattern can be easily
set up as follows:Location: [\s]*([A-Z][-a-zA Z] +[\s] *[A-za-z0-9]*). This will
match one or two words after the “Location:” strin document contains e.g.
“Location: New York” and “New York” text is not foud in any individual in the
reference ontology, we can create a new simpleviehail of the region type (this is set
up in Classproperty of pattern) witlhdfs:label “New York”. In the future if New York
is found in another document, the same individaalletected. Note that if we would
create e.g. “New York City” individual, one can bere that New York City is not a
region but rather it's subclass - the town in agation ontology. If we would change

* GEOnet Names Server, Names, 2006, http://earthrigh.mil/gns/html/cntry_files.html

manually such individual to be an individual of ttmvn class, it would be updated
automatically in all detected data.

We think that with Ontea it is possible to detectieate ontology elements within the
reference ontology with satisfactory results. Té¢as be achieved automatically or semi
automatically, when an expert can review and uptheteesults.

Each pattern in Ontea contains of several progewigich are defined in java property
files:

= PATTERN: contain regular expression pattern whechdarch in text

= CLASS: represents URI of ontology class. Individuare searched within this
class.

= CREATE: If set to True, and PATTERN was found inxttéut not found in
knowledge base, Ontea will create simple individafalCLASS type in knowledge
base with only property of found text as rdfs:label

See pattern files in example dir for examples gécts and patterns of Ontea.

A.4 Manual for Adaptation to Other Domains
The Ontea tool can be used in different applicatiomains. Used annotation method is
generic and it can work with any text and OWL basetblogy model.
A.4.1 Configuring to Other Domain
When using Ontea in other domain it is necessapyduide following modifications:
= To change application or domain ontology
= To change or modify used regular expressions

The tool search or create ontology individualsdaape of domain ontology model, thus
change of ontology model is related to Ontea conetionality.

When changing regular expression patterns, we thuse some generic patterns or
reuse patterns for specific individuals/objects.e Sgection on regular expression
patterns.

If Ontea is used with Information Retrieval toolsck as Lucene or RFTS, depending
on language of processed texts, appropriate lematen tool need to be used.

A.4.2 Dependencies

Log4J is involved domain independently into the €ant

Lemmatization tool need to be used based on lamgoadexts in the domain. E.g.
Morponaryfor Slovak orPorter’s algorithmfor English.

