
A Ontea – Pattern based Semantic Annotation
Platform

A.1 Basic Information
Ontea tool analyze document or text using a regular expression patterns and detects
equivalent semantics elements according to defined domain ontology. Several cross
application patterns are defined but to achieve good results new patterns need to be
defined for each application. Ontea also creates new ontology individual of defined
class and assignees detected ontology elements/individuals as properties of defined
ontology class.

The method used in Ontea is comparable particularly with methods sucha s C-
PANKOW, KIM, or SemTag. It works over text applicable to an application domain
that is described by a domain ontological model and uses regular expressions to identify
relations between text and a semantic model. In addition to having pattern
implementation over regular expressions, created Ontea’s architecture allows simply
implementation of other methods based on patterns such as wrapers, solutions using
document structure, language patterns, e.g. C-PANKOW and many others.

A.1.1 Basic Terms

Semantic
Annotation of Text

Identification of formalized objects in texts

Ontology Formalized model of problem environment understandable
by computer system

Regular
expression
patterns

regular expression is a string that is used to describe or
match a set of strings, according to certain syntax rules

A.1.2 Method Description

Ontea works on text, in particular domain described by domain ontology and uses
regular expression patterns for semi-automatic semantic annotation. In Ontea we try to
detect ontology elements within the existing application/domain ontology model. It
means that with the Ontea annotation engine we want to achieve the following
objectives:

� Detect meta data from the text

� Prepare improved structured data for later computer processing

� Structured data are based on the existing application ontology model

The tool results can be made more precise by connecting Ontea with other tools for
lemmatization (e.g. The Morphonary1 tool for lemmatization of Slovak) and also by
estimating relevance of new created individuals by information retrieval tools such a
s RFTS or Lucene.

A.1.3 Scenarios of Use

Ontea can be executed in 3 different scenarios:

� Ontea: searching relevant concepts in knowledge base (KB) according to
generic patterns

� Ontea creation: creating new individuals of concrete application specific
objects found in text

� Ontea IR: Similar as previous with the feedback of information retrieval tool
(e.g. Lucene) to get relevance computed above word occurrence.

Figure 1 Simple ontology used in examples

 The following texts, one in Slovak and one in Englis, in Table 1 and ontology
with several instances (Figure 1) illustrate the Ontea method. Moreover the table shows
examples of used pattersn based on regular expressions. For English only one regular
expression was used to find one or two words beginning with a capital letter.

Table 1 Example Text

Príklad Text Vzory – regulárne výrazy
1 Michal Laclavik works for Slovak

Academy of Sciences located in
Bratislava, the capital of Slovakia

\\b(\\p{Lu}[a-z]+ +\\p{Lu}[a-
z]+|\\p{Lu}[a-z]+)\\b

2 Automobilka KIA sa rozhodla investovať
pri Žiline, kde vybudovala svoju prvú
továreň v Európe.

Kontakt:
Kia Motors Slovakia, s.r.o.
P.O.Box 2
01301 Teplička nad Váhom
Slovakia

\\b([\\p{Lu}][-&\\p{L}]+[]*[-
&\\p{L}]*[]*[-&\\p{L}]*)[,
]+s\\.r\\.o\\.
Organization

\\b[0-9]{3}[]*[0-9]{2}
+(\\p{Lu}[^\\s,.]+[]*[^0-9\\s,.]*[
]*[^0-9\\s,.]*)[]*[0-9\\n,]+
Settlement

 (v|pri) +(\\p{Lu}\\p{L}+)
Location

3 Car maker KIA Motors decided to build
new plant in Slovakia near town of

(in|near) +(\\p{Lu}\\p{L}+)
Location

1 http://nazou.fiit.stuba.sk/home/?page=morphonary

Zilina. It is its first plant in Europe.

Contact:
Kia Motors Slovakia, ltd.
P.O.Box 2
01301 Teplicka nad Vahom
Slovakia

(city|town) of (\\p{Lu}\\p{L}+
\\p{Lu}}\\p{L})
Settlement

\\b([\\p{Lu}][-&\\p{L}]+[]*[-
&\\p{L}]*[]*[-&\\p{L}]*)[,]+
(Inc|Ltd)[.\\s]+
Organization

 In the English text example showed only finding of instances present in a
knowledge base, see Figure 1 and Table 2, 1st row. The Slovak text example
demonstrated not only searching for instances within a knowledge base but also their
creation. The example uses three patterns for Slovak:

� Searching for a company by „s.r.o.“ (public limited company)

� Searching for residence/domicile by ZIP code

� Searching for geographical location by means of prepositions in, near followed
by a word beginning with a capital letter.

Table 2, 2nd and 3rd rows give the results. Instances created from the 2nd row are shown
also on Figure 2.

Table 2 Annotation result

Example Method Annotation Results
1 Ontea Michal Laclavik Person

Slovak Academy Organization
Bratislava Settlement
Slovakia Country

2 Ontea create Žiline Location
Európe Location
Kia Motors Slovakia Organization
Teplička nad Váhom Settlement

2 Ontea create,
lematizácia

Žilina Location
Európa Continent
Kia Motors Slovakia Organization
Teplička nad Váh Settlement

3 Ontea create Slovakia Country
Zilina Settlement
Europe Continent
Kia Motors Slovakia Organization

 To produce results in row 3 in Table 2 we used lemmatization of found texts that
enables more precise creation of instances in the nominative in cases „Žilina“ and
„Európa“, however, location „Teplička nad Váhom“ came up wrong, as „Teplička nad
Váh“. It would be appropriate to use lemmatization only for several patterns, not for all
of them. Furthermore, we can direct our attention to „Európa“ that is not of a type
Location but Continent because algorithm found it in a knowledge base using inference
since Continent is a subclass of Location. In a creation process, algorithm first looks
into the knowledge base to find out whether instance of such type or inferred instance
already exists.

Figure 2 created instances in Slovak text – Ontea create.

Use of Ontea, 1st scenario is also described on example from Job Offer Application.

Figure 3 Job Offer Ontology

On Figure 3 main components of Job Offer ontology are displayed. Important fragments
on ontology are Location or Skills individuals which can be then detected by
annotation.

Figure 4 Web Document of Job Offer

On Figure 5 the individual of the Job Offer is created based on the semantic annotation
of a Job Offer document (Figure 3), using simple regular expression patterns (see
regular expression patterns chapter) where main individuals can be detected by the title
property such as skillXML or skillPHP individuals. Other specialized patterns such as
pattFullTime are used to detect concrete job offer properties – jtPermanent individual,

which represents a permanent job position. In this example the job offer location – San
Francisco id identified by a regular expression ([-A-Za-z0-9]+ []+[-A-Za-z0-9]+),
because individual locSF has the property title „San Francisco“. Similarly, other
ontology elements are detected. Some regular expressions search for ontology
individuals, other ontology classes and others such as pattFullTime annotate a job offer
by a concrete individual jtPermanent if expression (Full[-]Time) is found. Systems
detect ontology elements based on domain ontology. In this example it is ontology of
job offers.

Location

Town

isa

Country

isa

skillSQL

Skill

io

skillXML

io

skillPHP

io

JobType

jtPermanent

iohasCountry*

locNewYork

io

locUS

io

JobOffer

job_1_html

io

hasRequirements hasRequirements hasType

hasLocation

hasRequirementshasLocation

Figure 5 Offer Individual Created by Ontea

Detected ontology individuals are then assigned as properties of job offer, thus ontology
instance of job offer is created out of its text representation in the NAZOU pilot
application.

A.1.4 External Links and Publications

� Ontology based Text Annotation – OnTeA; Michal Laclavik, Martin Seleng, Emil
Gatial, Zoltan Balogh, Ladislav Hluchy; Information Modelling and Knowledge
Bases XVIII. IOS Press, Amsterdam, Marie Duzi at al., Frontiers in AI, Vol. 154,
February 2007, pp.311-315. ISBN 978-1-58603-710-9, ISSN 0922-6389.

� Ontea: Pattern based Semantic Annotation Platform, SourceForge.net project,
http://ontea.sourceforge.net/

� Hatcher E., Gospodnetić O., Lucene in Action, Manning (12 Jan 2005), ISBN:
1932394281

� Log4J, Java-based logging utility, Apache Software Foundation.
(http://logging.apache.org/log4j)

� Jena, http://jena.sf.net/

� Sesame, http://openrdf.org/

A.2 Integration Manual
Ontea is developed in Java (Standard Edition 5) and distributed as a jar archive. Access
to the functionality of the tool is provided through Java Interface. Ontea is not a stand-
alone application; the tool is proposed to be included in other application/tool, which
will call the Ontea methods, however several classes are implemented with main()
method to run some test and example functionality.

A.2.1 Dependencies

Ontea uses following libraries:

� Log4J logging utility

� Jena or Sesame semantic web library depending on used version

� Lucene information retrieval library in case of use in IR scenario

� Morphonary tool in case of connection with lemmatizator

A.2.2 Installation

Deploying Ontea into other application requires the following steps (Java Integrated
Development Environment and Apache Ant should be used):

1. download all Ontea files from ontea.sf.net

2. ant start to start the demo or ant dist to create jar file and use library

You can run and see ontea.example.text.Annotation class for more details. Directory
“example” in the ontea root directory contains configuration files, text to be annotated
and simple ontology presented in the scenario.

A.2.3 Configuration

Ontea use property file which need to be defined while creating onto.sesame.Memory

instance. See Java Doc for more details.

Values such as Sesame repository type, location or ontology namespaces need to be
defined. See onto.sesame.Config Java Doc for more details.

ontea.config package contain of pattern.property files for different languages or
applications where regular expression patterns can be modified.

A.2.4 User Guide

Basic Use

If you want to use Ontea without deep knowledge of its structure and functionalities,
you should build your code based on examples in ontea.example.text package. Class
Annotation shows example how to annotate text from “example” directory by applying
regular expression patterns from user defined property file (also in example directory).

Annotation examples are also provided within JUnit test classes e.g. ontea.core.test.

TestPatternRegExp class, showing annotation of String using defined regular
expression.

Code Structure

Main Ontea classes and interfaces are located in ontea.core package. Main objects are:

� Pattern

� Result

Ontea annotation is build on pattern based approach, thus Pattern interface is one of
main Ontea objects. Currently only one implementation of Pattern is provided:

PatternRegExp, which annotates using regular expression patterns. Each Pattern
implementation has to implement annotates method, which annotates given text and
returns Set of Results. Result represents result of annotation, which is in fact individual
of certain type or class. So far there are two Result super classes: ResultRegExp and
ResultOnto. While Result is general individual not depending of used pattern or
ontology/model implementation, Result extensions are created or found by applying
result transformers on Result instances or Result sets.

These transformers are located in ontea.transform package. Package contain
ResultTransformer interface with methods for transforming Result and Result set and
also its implementations. Some of implementations are annotation result lemmatization,
ontology knowledge base mapping or relevance identification using information
retrieval methods.

Other packages and classes are related to transformers implementation, e.g manipulating
sesame repository or integrating lucene indexing functionality to identify relevance.

Use of transformers can be seen in ontea.example.text.Annotation class, which shows
use of sesame transformer as well as lemmatization on Slovak text.

A.3 Developer Manual

A.3.1 Tool Structure

Architecture of the system contains similar elements as the main annotation algorithm
described in next chapter. Inputs are text resources (HTML, email, plain text) which
need to be annotated as well as corresponding patterns from property files. An output is
a new ontology individual, which corresponds to the annotated text. Properties of this
individual are filled with detected ontology individuals according to defined patterns.

Figure 6 Ontea architecture

When extending the code of Ontea some of following classes and interfaces need to be
extended and implemented:

� ontea.core.Pattern: interface to adopt different pattern annotation techniques

� onetea.core.Result: class representing results of pattern annotation – instances of
defined type.

� ontea.transform.ResultTransformer: interface transforming results of annotation
to different type or quality of results e.g. concrete ontology mapping, knowledge
base implementation or result quality checking.

Ontea works with RDF/OWL Ontologies. It is implemented in Java using Jena
Semantic Web Library or Sesame library. In both implementation inference is used to
achieve better results.

Figure 7 Basic classes of Ontea platform.

Ontea tool can be easily integrated with external tools. Some tools can be integrated by
implementation of result transformers and other need to be integrated directly.

� MapReduce: Large scale semantic annotation using MapReduce Architecture –
is main topic of this article. Integration with Hadoop requires implementation of
Map and Reduce methods as described in next chapter.

� Language Identification: In order to use correct regexes or other patterns, often
we need to identify language of use. For this reason it is convenient to integrate
Ontea with language detection tool. We have tested Ontea with Nalit. Nalit is
able to identify Slovak and English texts as well as others if trained.

As already mentioned some integration can be done by implementing Result
transformers:

� Lemmatization: When concrete text is extracted as representation of an
individual, often we need to lemmatize found text to found or create correct
instance. For example capital of Slovakia can be identified in different
morphological forms: Bratislava, Bratislave, Bratislavu, or Bratislovou and by
lemmatization we can identify it always as individual Bratislava. We have tested
Ontea with Slovak lemmatizer Morphonary. It is also possible to use

lemmatizers or stemmers from Snowball project2, where java code can be
generated.

� Relevance Identification: When new instance is being created or found, it is
important to decide on instance relevance. This can be solved using information
retrieval methods and tools such as Lucene3. When connecting with Lucene,
Ontea asks for percentage of occurrence of matched regular expression pattern
to detected element represented by word on used document set. Document set
need to be indexed by Lucene. Example can be Google, Inc. matched by pattern
for company search: \\s+([-A-Za-z0-9][]*[A-Za-z0-9]*),[]*Inc[.\\s]+ ”, where
relevance is computed as “Google, Inc.” occurrence divided by “Google”
occurrence. Use of Lucene is related to Ontea IR scenario and LuceneRelevance
implementation of ResultTransformer interface. Similarly, other relevance
algorithms such as cosine measure can be implemented. This was used for
example in SemTag.

� OWL Instance Transformation: Sesame, Jena: Transformation of found key –
value pairs into RDFS or OWL instances in Sesame or Jena API. With this
integration, Ontea is able to find existing instances in knowledge base if existing
and create new once if no instance found in DB. Ontea also use inference to
found appropriate instance. For example if Ontea process sentence “Slovakia is
in Europe.” using pattern for location detection (in|near) +(\\p{Lu}\\p{L}+)
following type value pair is detected Location: Europe. If we have Location
ontology with Subclasses as Continents, Settlements, Countries or Cities and
Europe is already present as instance of continent, Ontea can detect existing
Europe instance in knowledge base using inference.

A.3.2 Method Implementation

The underlying principle of the Ontea algorithm can be described by the following
steps:

1. The text of a document is loaded.

2. The text is proceed by defined regular expressions and if they are found,
corresponding ontology individual according to rest of pattern properties
is added to a set of found ontology individuals.

3. If no individual was found for matched pattern and createInstance
property is set, a simple individual of the class type contained in the
hasClass property is created with only property rdf:label containing
matched text.

4. Such process is repeated for all regular expressions and the result is a
set of found individuals.

5. An empty individual of the class representing proceed text is created and
all possible properties of such ontology class are detected from the
class definition.

6. The detected individual is compared with the property type and if the
property type is the same as the individual type (class), such individual
is assigned as this property.

7. Such comparison is done for all properties of a new individual
corresponding with the text/document as well as for all detected
individuals.

2 http://snowball.tartarus.org/
3 http://lucene.apache.org/

The algorithm also uses inference in order enable assignment of a found individual to
the corresponding property also if the inferred type of a found individual is the same as
the property type. The weak point of the algorithm is that if the ontology definition
corresponding with the detected text contains several properties of the same type, in this
case detected individuals cannot be properly assigned. This problem can be overcome if
algorithm is used only on creation of individuals of different property types. Crucial
steps of the algorithms as well as inputs and outputs can be seen also on figure 6.

Regular Expression Patterns

Regular expression patterns are the key element of the Ontea algorithm. Usually for
each problem domain we need to define new, problem specific patterns to match the
ontology elements in the text. However several cross application patterns exist:

• Matching one word starting with capital letter: ([A-Z][-A-Za-z0-9]+)
• Two words pattern: ([A-Z][A-Za-z0-9]+[\s]+[A-Z][A-Za-z0-9]+)
• Similar for 3 and 4 words pattern.

When individuals in the reference domain ontology contain plain text labels describing
or naming the individuals, they can be detected by Ontea using the patterns mentioned
above. Even when using such simple patterns, we can achieve satisfactory results.. If the
reference ontology contains critical amount of individuals with assigned text labels,
results of annotation are satisfactory with above mentioned cross application patterns. A
good example is the location ontology, which is used in both examples provided in this
paper. The location ontology contains concepts such as regions, countries, settlements,
mountains, rivers or lakes as well as individuals of such classes. It is possible to create
such ontology with concrete individuals of towns, settlements, mountains or rivers.
Such data are available on the internet4. We have also created such ontology containing
all geographical data for Slovakia.

When keywords such as “Danube” or “Bratislava” appear in the text, correct individuals
are detected by Ontea, where the Danube is an individual of a river and Bratislava is an
individual of the Capital subclass of the settlement and the town. Similar detection can
be achieved also with concepts such as a skill, a company or a category when ontology
consists of a critical mass of individuals.

As already described, Ontea not only detects but also creates individuals if patterns
are set up that way. A good example is again the location ontology. In many web pages
for instance job offers, location is referenced by text “Location: City or Region Name”.
When we convert web pages to a plain text, a regular expression pattern can be easily
set up as follows: Location:[\s]*([A-Z][-a-zA-Z]+[\s]*[A-Za-z0-9]*). This will
match one or two words after the “Location:” string. If document contains e.g.
“Location: New York” and “New York” text is not found in any individual in the
reference ontology, we can create a new simple individual of the region type (this is set
up in Class property of pattern) with rdfs:label “New York”. In the future if New York
is found in another document, the same individual is detected. Note that if we would
create e.g. “New York City” individual, one can be sure that New York City is not a
region but rather it’s subclass - the town in our location ontology. If we would change

4 GEOnet Names Server, Names, 2006, http://earth-info.nga.mil/gns/html/cntry_files.html

manually such individual to be an individual of the town class, it would be updated
automatically in all detected data.

We think that with Ontea it is possible to detect or create ontology elements within the
reference ontology with satisfactory results. This can be achieved automatically or semi
automatically, when an expert can review and update the results.

Each pattern in Ontea contains of several properties which are defined in java property
files:

� PATTERN: contain regular expression pattern which is search in text

� CLASS: represents URI of ontology class. Individuals are searched within this
class.

� CREATE: If set to True, and PATTERN was found in text but not found in
knowledge base, Ontea will create simple individual of CLASS type in knowledge
base with only property of found text as rdfs:label.

See pattern files in example dir for examples of objects and patterns of Ontea.

A.4 Manual for Adaptation to Other Domains
The Ontea tool can be used in different application domains. Used annotation method is
generic and it can work with any text and OWL based ontology model.

A.4.1 Configuring to Other Domain

When using Ontea in other domain it is necessary to provide following modifications:

� To change application or domain ontology

� To change or modify used regular expressions

The tool search or create ontology individuals in scope of domain ontology model, thus
change of ontology model is related to Ontea core functionality.

When changing regular expression patterns, we can still use some generic patterns or
reuse patterns for specific individuals/objects. See section on regular expression
patterns.

If Ontea is used with Information Retrieval tools such as Lucene or RFTS, depending
on language of processed texts, appropriate lemmatization tool need to be used.

A.4.2 Dependencies

Log4J is involved domain independently into the Ontea.

Lemmatization tool need to be used based on language of texts in the domain. E.g.
Morponary for Slovak or Porter’s algorithm for English.

